Here's the work I've done. Is it right?
V=πr^2h
π(0.375)^2(0.80)
=0.4m^3 (smallest cylinder)
π(0.625)^2(0.80)
=1.0m^3 (middle cylinder)
0.70+0.80
=1.5m (height for big cylinder)
π(1.5)^2(1.5)
=10.6m^3
10.6m^3+0.4m^3+1.0m^3
=12.0m^3
The spa will fit 12.0m^3 of water

Heres the work Ive done Is it right Vπr2h π03752080 04m3 smallest cylinder π06252080 10m3 middle cylinder 070080 15m height for big cylinder π15215 106m3 106m30 class=

Respuesta :

Answer: [tex]6.67m^3[/tex]

Step-by-step explanation:

For hemisphere...

diameter (d1) = 3m

radius (r1) = (3/2)m

The total volume of the hemisphere

[tex]v1=\frac{2}{3} \pi (r1)^3[/tex]

[tex]=\frac{2}{3} \pi (\frac{3}{2} )^3[/tex]

[tex]=\frac{9}{4} \pi[/tex]

-----------------------------------------------------------------------

For smaller cylinder

diameter (d2) = 0.75

radius (r2) = 0.75/2m

height (h2) = 0.80m

Volume of smaller cylinder

(V2) = [tex]\frac{1}{3} \pi (r2)^2h2[/tex]

[tex]=\frac{1}{3} \pi (\frac{0.75}{2} )^2*0.80[/tex]

[tex]=\frac{3}{80} \pi[/tex]

------------------------------------------------------------------------

For bigger cylinder

Volume of bigger cylinder =

[tex]V3=\frac{1}{3} \pi (\frac{1.25}{2} )^2*0.70[/tex]

[tex]=\frac{35}{384} \pi[/tex]

-----------------------------------------------------------------------

Volume of water =  [tex](v1 - v2 - v3) =\frac{9}{4} \pi -\frac{3}{80} \pi -\frac{35}{384} \pi = 6.67 m^3[/tex]