contestada

Match each power of a power expression with its simplified expression.
(4-3)-3
(46)-3
(49)-9
(-49)²


1
418
49
(-4)18
40
need to know which one goes to which

Respuesta :

Answer:

(4^6)^-3 = 1/4^18(4^0)^-9 = 4^0(4^-3)^-3 = 4^9(-4^9)^2= (-4)^18Step-by-step explanation:(4^6)^-3 = 1/4^18(4^6)^-3= 4^(6*-3)(4^6)^-3= 1/4^18(4^0)^-9 = 4^0(4^0)^-9 = 4^(0*-9)(4^0)^-9= 4^0(4^-3)^-3 = 4^9(4^-3)^-3= 4 ^ (-3*-3)(4^-3)^-3 = 4^(9)(-4^9)^2= (-4)^18(-4^9)^2= -4^(9*2)(-4^9)^2=(-4)^18

Step-by-step explanation:

Answer:

[tex](4^{-3})^{-3}=4^9[/tex]

[tex](4^6)^{-3}=\dfrac{1}{4^{18}}[/tex]

[tex](4^0)^{-9}=4^0[/tex]

[tex](-4^9)^2=(-4)^{18}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{3 cm}\underline{Exponent Rules}\\\\$(a^b)^c=a^{bc}$\\\\$a^{-n}=\dfrac{1}{a^n}$\\\end{minipage}}[/tex]

Apply the above exponent rules to simplify each expression.

[tex]\begin{aligned}\implies (4^{-3})^{-3}&=4^{-3 \times -3}\\&=4^9\end{aligned}[/tex]

[tex]\begin{aligned}\implies (4^6)^{-3}&=4^{6 \times -3}\\&=4^{-18}\\&=\dfrac{1}{4^{18}}\end{aligned}[/tex]

[tex]\begin{aligned}\implies (4^0)^{-9}&=4^{0 \times -9}\\&=4^0\end{aligned}[/tex]

[tex]\begin{aligned}\implies (-4^9)^2&=(-4)^{9 \times 2}\\&=(-4)^{18}\end{aligned}[/tex]