Not sure how to approach this one, any help would be appreciated!

If [tex]f'[/tex] is continuous on [tex][0, \infty)[/tex] and [tex]\lim_{x \to \infty} f(x) =0[/tex] , show that [tex] \int\limits^\infty_0 {f'(x)} \, dx =-f(0)[/tex] .


Respuesta :

The continuity of [tex]f'[/tex] and its limiting behavior guarantees that [tex]f'[/tex] is Riemann integrable, so you can write

[tex]\displaystyle\int_0^\infty f'(x)\,\mathrm dx=uv\bigg|_{x=0}^{x\to\infty}-\int_0^\infty v\,\mathrm du[/tex]

where [tex]u=1\implies\mathrm du=0\,\mathrm dx[/tex] and [tex]\mathrm dv=f'(x)\,\mathrm dx\implies v=f(x)[/tex], so that

[tex]\displaystyle\int_0^\infty f'(x)\,\mathrm dx=f(x)\bigg|_{x=0}^{x\to\infty}=\lim_{x\to\infty}f(x)-f(0)=-f(0)[/tex]