Respuesta :

check the picture below
Ver imagen jdoe0001

Answer:

[tex]z= -4 ( cos \pi + i sin \pi)[/tex]

Step-by-step explanation:

Complex number [tex]z= x+iy[/tex] can be written as follows

[tex]z=r(cos \theta +i sin\theta )[/tex]

where [tex]r= \sqrt{x^{2}+ y^{2} }[/tex]

and [tex]\theta = tan^{-1} (\frac{y}{x} )[/tex]

We have complex number [tex]z= -4[/tex]

This can also be written as [tex]z= -4+i 0[/tex]

let us compare [tex]z= -4+i 0[/tex] with [tex]z= x+iy[/tex]

so we have [tex]x= -4[/tex]  and [tex]y= 0[/tex]

now we can find [tex]r[/tex]  and [tex]\theta[/tex] in following ways

[tex]r= \sqrt{(-4)^{2}+0^{2}}= -4[/tex]

[tex]\theta = tan^{-1} (\frac{0}{-4}) =tan^{-1}(0)[/tex]

[tex]\theta = \pi[/tex]  ( since x is negative so we take π )

now we have polar representation given by

[tex]z= -4 ( cos \pi + i sin \pi)[/tex]