What is the range of the function y=square x+5

Answer:
Option B is correct.
The range of the function is [tex]y\geq 0[/tex]
Explanation:
The function y=f(x) =[tex]\sqrt{x+5}[/tex]
The range of a function y=f(x) is the set of values y takes for all values of x within the domain of y=f(x).
The domain of given function f(x) is the set of all values of x in the interval [tex][-5, \infty)[/tex]
As x takes values from -5 to [tex]+\infty[/tex],
then, [tex]\sqrt{x+5}[/tex] takes values from [tex]\sqrt{0}[/tex] =0 to [tex]\sqrt{+\infty}[/tex]
Therefore, the range of the y=[tex]\sqrt{x+5}[/tex] is given by: [tex][0, \infty)[/tex] or we can also write it as [tex]y\geq 0[/tex]