Respuesta :
We have to find the quotient :
( 4 x³ y + 12 x² y³ - 20 x y ) / ( 4 x y ) =
= 4 x y ( x² + 3 x y² - 5 ) / ( 4 x y ) = ( Then 4 x y will be cancelled )
= x² + 3 x y² - 5
Answer:
D ) x² + 3 x y² - 5
( 4 x³ y + 12 x² y³ - 20 x y ) / ( 4 x y ) =
= 4 x y ( x² + 3 x y² - 5 ) / ( 4 x y ) = ( Then 4 x y will be cancelled )
= x² + 3 x y² - 5
Answer:
D ) x² + 3 x y² - 5
Answer:
The quotient is:
[tex]x^2+3xy^2-5[/tex]
Step-by-step explanation:
We have to find the quotient of the algebraic quantity:
[tex]\dfrac{4x^3y+12x^2y^3-20xy}{4xy}[/tex]
i..e we have dividend as:
[tex]4x^3y+12x^2y^3-20xy[/tex] , divisor as: [tex]4xy[/tex]
Now we can write our dividend term as:
[tex]4x^3y+12x^2y^3-20xy=4xy(x^2+3xy^2-5)[/tex]
Hence, the we can represent our expression as:
[tex]\dfrac{4x^3y+12xy^3-20xy}{4xy}=\dfrac{4xy(x^2+3xy^2-5)}{4xy}\\\\=x^2+3xy^2-5[/tex]
Hence, the quotient is:
[tex]x^2+3xy^2-5[/tex]