Respuesta :
The length of the radius is given by the Pythagoras formula which take the radius as the hypotenuse.
radius = [tex] \sqrt{[x_{1}- x_{2}]^2+[ y_{1} - y_{2}]^2 } [/tex]
radius = [tex] \sqrt{(3--3)^2+(4--4)^2} [/tex]
radius = [tex] \sqrt{6^2+8^2} [/tex]
radius = [tex] \sqrt{36+64} [/tex]
radius = [tex] \sqrt{100} [/tex]
radius = 10
radius = [tex] \sqrt{[x_{1}- x_{2}]^2+[ y_{1} - y_{2}]^2 } [/tex]
radius = [tex] \sqrt{(3--3)^2+(4--4)^2} [/tex]
radius = [tex] \sqrt{6^2+8^2} [/tex]
radius = [tex] \sqrt{36+64} [/tex]
radius = [tex] \sqrt{100} [/tex]
radius = 10

The equation of a circle is: (x - xo)^2 + (y - yo)^2 = r^2
Where xo and yo are the coordinates of the center = (3,4).
r is the radius of the circle and you can find it using the equation of the distance between the point (-3,-4) and the center (3,4):
r^2 = (-3 -3)^2 + (-4 - 4)^2 = 6^2 + 8^2 = 36 + 64 = 100.
=> r = √100
=> r = 10
Answer: r = 10
Where xo and yo are the coordinates of the center = (3,4).
r is the radius of the circle and you can find it using the equation of the distance between the point (-3,-4) and the center (3,4):
r^2 = (-3 -3)^2 + (-4 - 4)^2 = 6^2 + 8^2 = 36 + 64 = 100.
=> r = √100
=> r = 10
Answer: r = 10