Respuesta :
Answer: To find the value of x, we can use the fact that the sum of supplementary angles is 180 degrees.
So, we have:
∠ABC + ∠CBD = 180
Substitute the given angle measures:
(3x + 25) + 32 = 180
Simplify the equation:
3x + 57 = 180
Now, solve for x:
3x = 180 - 57 3x = 123 x = 123 / 3 x = 41
Therefore, the equation to solve for x is:
3x + 57 = 180 3(41) + 57 = 180 123 + 57 = 180 180 = 180
So, x = 41.
Step-by-step explanation: thx
Answer:
Equation: [tex]\sf (3x + 25) + 32 = 180[/tex]
[tex]\sf x = 41 [/tex]
Step-by-step explanation:
Two angles are supplementary when their measures add up to 180 degrees. Thus, the equation to solve for [tex]\sf x [/tex] is:
[tex]\sf \angle ABC + \angle CBD = 180^\circ [/tex]
Given that [tex]\sf \angle ABC = (3x + 25)^\circ [/tex] and [tex]\sf \angle CBD = 32^\circ [/tex], substitute these values into the equation:
[tex]\sf (3x + 25)^\circ + 32^\circ = 180^\circ [/tex]
So, the equation to solve for x is:
[tex]\sf (3x + 25) + 32 = 180[/tex]
Let's solve for x.
Combine like terms:
[tex]\sf 3x + 25 + 32 = 180 [/tex]
[tex]\sf 3x + 57 = 180 [/tex]
Now, subtract 57 from both sides:
[tex]\sf 3x = 180 - 57 [/tex]
[tex]\sf 3x = 123 [/tex]
Divide both sides by 3:
[tex]\sf x = \dfrac{123}{3} [/tex]
[tex]\sf x = 41 [/tex]
So, the equation to solve for [tex]\sf x [/tex] is [tex]\sf 3x + 57 = 180 [/tex], and the value of [tex]\sf x [/tex] is 41.
To find the measures of [tex]\sf \angle ABC [/tex] and [tex]\sf \angle CBD [/tex]:
[tex]\sf \angle ABC = (3 \times 41 + 25)^\circ = 123 + 25 = 148^\circ [/tex]
[tex]\sf \angle CBD = 32^\circ [/tex]
Therefore, [tex]\sf \angle ABC = 148^\circ [/tex] and [tex]\sf \angle CBD = 32^\circ [/tex].