!!!!!!!!!!! 100 POINTS !!!!!!!!!!!!!!!!!!! ENSURE YOUR ANSWER IS CORRECT BEFORE POSTING !!!!!
How would you go about solving this? Please provide formulae, rules, explanation / working out . Thank you in advance!

100 POINTS ENSURE YOUR ANSWER IS CORRECT BEFORE POSTING How would you go about solving this Please provide formulae rules explanation working out Thank you in class=

Respuesta :

Answer:

x = 8

Step-by-step Explanation:

Given:

Let the total number of counters be x. Initially, 5 counters show a red face

Steps:

1. After turning over one red and one green counter, x - 4 counters remain

2. Probability equation:

[tex]\frac{5}{x} \times \frac{x - 4}{x} + \frac{x - 5}{x} \times \frac{6}{x} = \frac{19}{32}[/tex]

3. Simplify to get [tex] 19x^2 - 352x + 1600 = 0 [/tex]

5. Solve the quadratic equation to find x = 8

Related Topics

Probability - https://brainly.com/question/32446139

msm555

Answer:

8

Step-by-step Explanation:

Given:

  • Initially, there are 5 red counters and [tex]\sf x [/tex] total counters.
  • After turning one red and one green counter, we have:
  • Red counters = [tex]\sf 5 - 1 = 4 [/tex]
  • Green counters = [tex]\sf x - 5 + 1 = x - 4 [/tex]

We are given the probability condition:

Let's use the corrected equation and solve for [tex]\sf x[/tex]:

[tex]\sf \dfrac{5}{x} \times \dfrac{x - 4}{x } + \dfrac{x - 6}{x} \times \dfrac{5}{x } = \dfrac{19}{32} [/tex]

Expand the Equation:

[tex]\sf \dfrac{5(x - 4)}{x^2} + \dfrac{6(x - 5)}{x^2} = \dfrac{19}{32} [/tex]

Combine the Fractions:

[tex]\sf \dfrac{5(x - 4) + 6(x - 5)}{x^2} = \dfrac{19}{32} [/tex]

[tex]\sf \dfrac{5x - 20 + 6x - 30}{x^2} = \dfrac{19}{32} [/tex]

[tex]\sf \dfrac{11x - 50}{x^2} = \dfrac{19}{32} [/tex]

Cross Multiply:

[tex]\sf 32(11x - 50) = 19x^2 [/tex]

[tex]\sf 352x - 1600 = 19x^2 [/tex]

Rearrange the Equation:

[tex]\sf 19x^2 - 352x + 1600 = 0 [/tex]

Solve the Quadratic Equation:

Use the quadratic formula:

[tex]\sf x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]

where [tex]\sf a = 19 [/tex], [tex]\sf b = -352 [/tex], and [tex]\sf c = 1600 [/tex].

[tex]\sf x = \dfrac{-(-352) \pm \sqrt{(-352)^2 - 4 \times 19 \times 1600}}{2 \times 19} [/tex]

[tex]\sf x = \dfrac{352 \pm \sqrt{123904 - 121600}}{38} [/tex]

[tex]\sf x = \dfrac{352 \pm \sqrt{2304}}{38} [/tex]

[tex]\sf x = \dfrac{352 \pm 48}{38} [/tex]

Simplify:

[tex]\sf x_1 = \dfrac{352 + 48}{38} = \dfrac{400}{38} [/tex]

[tex]\sf x_2 = \dfrac{352 - 48}{38} = \dfrac{304}{38} [/tex]

[tex]\sf x_1 = \dfrac{200}{19} [/tex]

[tex]\sf x_2 = \dfrac{152}{19} [/tex]

Since [tex]\sf x[/tex] represents the number of counters, it must be a positive integer.

Thus, [tex]\sf x = \dfrac{200}{19}[/tex] is not a valid solution.

Therefore, [tex]\sf x = \dfrac{152}{19} = 8[/tex]

Since [tex]\sf x [/tex] represents the total number of counters, it must be an integer.

Therefore, the appropriate value for [tex]\sf x [/tex] in this context would be [tex]\sf \boxed{8} [/tex].

Ver imagen msm555