Respuesta :
[tex]V= \frac{4}{3} \pi r^3[/tex]
[tex]\frac{3}{4}V= \pi r^3[/tex]
[tex]\frac{3}{4}V* \frac{1}{ \pi } = r^{3} [/tex]
[tex]r^{3} = \frac{3V}{4 \pi }[/tex]
[tex]r = \sqrt[3]{ \frac{3V}{4 \pi } } [/tex]
[tex]\frac{3}{4}V= \pi r^3[/tex]
[tex]\frac{3}{4}V* \frac{1}{ \pi } = r^{3} [/tex]
[tex]r^{3} = \frac{3V}{4 \pi }[/tex]
[tex]r = \sqrt[3]{ \frac{3V}{4 \pi } } [/tex]
Formula solved for r from the given formula of volume of a sphere is equals to [tex]r= \sqrt[3]{\frac{3V}{4\pi } }[/tex].
What is volume?
" Volume is defined as the total space occupied by three dimensional object."
According to the question,
Given formula,
Volume of the sphere
[tex]V = \frac{4}{3}\pi r^{3}[/tex]
Simplify it to get the value of 'r' from the given volume,
[tex]r^{3} = \frac{3V}{4\pi } \\\\\implies r= \sqrt[3]{\frac{3V}{4\pi } }[/tex]
Hence, formula solved for r from the given formula of volume of a sphere is equals to [tex]r= \sqrt[3]{\frac{3V}{4\pi } }[/tex].
Learn more about volume here
https://brainly.com/question/1578538
#SPJ3