Respuesta :

 The perimeter = 2* length of MN+ 2 * length of NK.

Use the distance formula to find these lengths:-

MN = sqrt((4-3)^2 + (3-2)^2))  = sqrt (1 + 1) = sqrt2

NK = sqrt((4-3)^2 + (3-5)^2))   = sqrt (1 + 4)  = sqrt5

Perimeter =   2 sqrt2 + 2 sqrt5   units

That is the third choice


The correct answer is:

2√2 + 2√5

Explanation:

To find the perimeter, we need the length of each side of the kite. To find this, we find the distance between each vertex.

To find the distance from M to N:

[tex] d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}
\\
\\=\sqrt{(4-3)^2+(3-2)^2}=\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt{2} [/tex]

To find the distance from N to K:

[tex] d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}
\\
\\=\sqrt{(3-4)^2+(5-3)^2}=\sqrt{(-1)^2+(2)^2}=\sqrt{1+4}=\sqrt{5} [/tex]

To find the distance from K to L:

[tex] d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}
\\
\\=\sqrt{(2-3)^2+(3-5)^2}=\sqrt{(-1)^2+(-2)^2}=\sqrt{1+4}=\sqrt{5} [/tex]

To find the distance from L to M:

[tex] d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}
\\
\\=\sqrt{(3-2)^2+(2-3)^2}=\sqrt{1^2+(-1)^2}=\sqrt{1+1}=\sqrt{2} [/tex]

To find the perimeter, we add together all of the side lengths:

√2+√5+√5+√2

Treating the radicals as like terms, we have:

2√2+2√5