Respuesta :

so... using  L'Hopital rule, LH, since this one is a indeterminate type

[tex]\bf \lim\limits_{x\to 0}~\cfrac{tan(7x)}{sin(3x)}\implies \underline{LH}\quad \lim\limits_{x\to 0}~\cfrac{7sec^2(7x)}{cos(3x)}\implies \cfrac{7\cdot \frac{1}{cos^2(7x)}}{cos(3x)} \\\\\\ \lim\limits_{x\to 0}~\cfrac{7\cdot \frac{1}{cos^2(0)}}{cos(0)}\implies \cfrac{7\cdot \frac{1}{1}}{1}\implies 7[/tex]