Respuesta :
*Given
Money of Phoebe - 3 times as much as Andy
Money of Andy - 2 times as much as Polly
Total money of Phoebe, - £270
Andy and Polly
*Solution
Let
B - Phoebe's money
A - Andy's money
L - Polly's money
1. The money of the Phoebe, Andy, and Polly, when added together would total £270. Thus,
B + A + L = £270 (EQUATION 1)
2. Phoebe has three times as much money as Andy and this is expressed as
B = 3A
3. Andy has twice as much money as Polly and this is expressed as
A = 2L (EQUATION 2)
4. This means that Phoebe has ____ as much money as Polly,
B = 3A
B = 3 x (2L)
B = 6L (EQUATION 3)
This step allows us to eliminate the variables B and A in EQUATION 1 by expressing the equation in terms of Polly's money only.
5. Substituting B with 6L, and A with 2L, EQUATION 1 becomes,
6L + 2L + L = £270
9L = £270
L = £30
So, Polly has £30.
6. Substituting L into EQUATIONS 2 and 3 would give us the values for Andy's money and Phoebe's money, respectively.
A = 2L
A = 2(£30)
A = £60
Andy has £60
B = 6L
B = 6(£30)
B = £180
Phoebe has £180
Therefore, Polly's money is £30, Andy's is £60, and Phoebe's is £180.
Money of Phoebe - 3 times as much as Andy
Money of Andy - 2 times as much as Polly
Total money of Phoebe, - £270
Andy and Polly
*Solution
Let
B - Phoebe's money
A - Andy's money
L - Polly's money
1. The money of the Phoebe, Andy, and Polly, when added together would total £270. Thus,
B + A + L = £270 (EQUATION 1)
2. Phoebe has three times as much money as Andy and this is expressed as
B = 3A
3. Andy has twice as much money as Polly and this is expressed as
A = 2L (EQUATION 2)
4. This means that Phoebe has ____ as much money as Polly,
B = 3A
B = 3 x (2L)
B = 6L (EQUATION 3)
This step allows us to eliminate the variables B and A in EQUATION 1 by expressing the equation in terms of Polly's money only.
5. Substituting B with 6L, and A with 2L, EQUATION 1 becomes,
6L + 2L + L = £270
9L = £270
L = £30
So, Polly has £30.
6. Substituting L into EQUATIONS 2 and 3 would give us the values for Andy's money and Phoebe's money, respectively.
A = 2L
A = 2(£30)
A = £60
Andy has £60
B = 6L
B = 6(£30)
B = £180
Phoebe has £180
Therefore, Polly's money is £30, Andy's is £60, and Phoebe's is £180.
Phoebe got £180, Andy got £60 and Polly got £30
The amount shared is given as:
Amount = £270
Represent Phoebe's share with x, Andy's with y and Polly's with z.
From the question, we have:
x = 3y
y = 2z
So, we have:
x : y : z = 3y : 2z : z
This gives
x : y : z = 6z : 2z : z
When £270 is shared in the above ratio, we have:
x : y : z = 180 : 60 : 30
Hence, Phoebe got £180, Andy got £60 and Polly got £30
Read more about ratios at:
https://brainly.com/question/16981404