What is the Measure Of arc WX in the diagram below?

Answer:
The correct option is A.
Step-by-step explanation:
Given information: Length of Arc TR is 116° and the measure of ∠WSX is 45°.
According to the angle of Intersecting Secants Theorem,
[tex]\text{Angle of Intersecting Secants}=\frac{1}{2}(\text{Major arc - Minor arc})[/tex]
Using this property we get
[tex]45^{\circ}=\frac{1}{2}(Arc(TR)-Arc(WX))[/tex]
[tex]45^{\circ}=\frac{1}{2}(116^{\circ}-Arc(WX))[/tex]
Multiply 2 on both the sides.
[tex]90^{\circ}=116^{\circ}-Arc(WX)[/tex]
[tex]Arc(WX)=116^{\circ}-90^{\circ}[/tex]
[tex]Arc(WX)=26^{\circ}[/tex]
The measure of arc WX is 26°. Therefore the correct option is A.