The compressed-air tank ab has a 250-mm outside diameter and an 8-mm wall thickness. it is fitted with a collar by which a 40-kn force p is applied at b in the horizontal direction. knowing that the gage pressure inside the tank is 5 mpa, determine the maximum normal stress and the maximum shearing stress at point k.

Respuesta :

W0lf93
Assume: neglect of the collar dimensions. Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa Ď„=(S*Q)/(I*b)=(40*〖10〗^3*Ď€(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(Ď€/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa @ Point K: Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa Using Mohr Circle: Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 ) Ď_max=104.2 MPa, Ď„_max=45.62 MPa