Respuesta :

Answer:  " 2.989 cm² " .
__________________________
Explanation:
__________________________
Let  "A" represent the "area" ; 
       "L" represent the "Length" ;
       "w" represent the "width" ;
       "P" represent the "Perimeter".
_________________________
Note the following equations /formulas for a rectangle:

A = L * w ; 
P = 2L + 2w ; 

Given:  "L = 2w " ;
  and:   " P = 7 [tex] \frac{1}{3}[/tex] cm" ; Solve for "A" ;
___________________________________________
 
7 [tex] \frac{1}{3}[/tex] cm = 2L + 2w ; 

Divide EACH side by "2" ;
_____________________________
  7 [tex] \frac{1}{3}[/tex] cm / 2  = (2L + 2w) / 2 ; 

to get:  

  7 [tex] \frac{1}{3}[/tex] cm / 2 = L + w ;

Given:  L = 2w ;  rewrite the above equation; substituting "2w" for "L" ;
______________________________________________________
  7 [tex] \frac{1}{3}[/tex] cm / 2 = 2w + w ;


 7 [tex] \frac{1}{3}[/tex] cm / 2 = 3w ;
______________________________
Note:  
______________________________ 
7 [tex] \frac{1}{3}[/tex] cm / 2 ;

  =  [tex] \frac{[(3*7) + 1]}{3}[/tex] cm / 2 ;

  =  [tex] \frac{22}{3}[/tex] cm / 2 ;

  = [tex] \frac{22 cm}{3} [/tex]  * [tex] \frac{1}{2} [/tex] ;

Note:  The "22 cm" cancels to "11 cm" ; and the "2" cancels out to "1" ;

{Since: "(22 cm  ÷ 2 = 11 cm)" ; and since: "(2 ÷ 2 = 1)" .

And we can rewrite the expression as:
____________________________________________
   [tex] \frac{11 cm}{3} [/tex]  * [tex] \frac{1}{1} [/tex] ;

and further simplify:

 [tex] \frac{11 cm}{3} [/tex] * [tex] \frac{1}{1} [/tex] ;

   =  [tex] \frac{11 cm}{3} [/tex]  * 1  ;

   =  [tex] \frac{11 cm}{3} [/tex]  ;
____________________________________________
Now, we can take the equation:

 7 [tex] \frac{1}{3}[/tex] cm / 2 = 3w ;
____________________________________________
and rewrite as:
____________________________________________
[tex] \frac{11 cm}{3} [/tex]   = 3w ; 

and multiply each side by "[tex] \frac{1}{3} [/tex]" ; to isolate "w" on one side of the equation ; and to solve for "w" ; 

   [tex] \frac{11 cm}{3} [/tex]  * [tex] \frac{1}{3} [/tex] = {3w} * [tex] \frac{1}{3} [/tex] ;

to get:  

    [tex] \frac{11 cm * 1}{3*3} [/tex] = w ;

          [tex] \frac{11 cm}{9} [/tex] =  w ;

↔  w = [tex] \frac{11}{9} [/tex] cm ;
___________________________________
Given:  L = 2w ;  

L = 2 * [tex] \frac{11}{9} [/tex] cm ;

      L = { [tex] \frac{2}{1}[/tex] * [tex] \frac{11}{9} [/tex] } cm ; 

      L = [tex] \frac{2*11}{1*9} [/tex] cm ;

      L = [tex] \frac{22}{9} [/tex] cm ;
____________________________________
Now, solve for "A" (area):

    A = L * w ; 

     A   = [tex] \frac{22}{9} [/tex] cm * [tex] \frac{11}{9} [/tex] cm ;

     A   =  [tex] \frac{22* 11}{9*9} [/tex] cm² ;

     A   =  [tex] \frac{242}{81} [/tex] cm² ;

     A = 2.9876543209876543 cm² ;  round to:  "2.989 cm² " .
____________________________________________________