Respuesta :

Answer:

Two possible solutions

Step-by-step explanation:

we know that

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{b}{Sin(B)}=\frac{c}{Sin(C)}[/tex]

we have

[tex]a=32\ units[/tex]

[tex]b=27\ units[/tex]

[tex]B=37\°[/tex]

step 1

Find the measure of angle A

[tex]\frac{a}{sin(A)}=\frac{b}{Sin(B)}[/tex]

substitute the values

[tex]\frac{32}{sin(A)}=\frac{27}{Sin(37\°)}[/tex]

[tex]sin(A)=(32)Sin(37\°)/27=0.71326[/tex]

[tex]A=arcsin(0.71326)=45.5\°[/tex]

The measure of angle A could have two measures

the first measure-------> [tex]A=45.5\°[/tex]

the second measure -----> [tex]A=180\°-45.5\°=134.5\°[/tex]

step 2

Find the first measure of angle C

Remember that the sum of the internal angles of a triangle must be equal to  [tex]180\°[/tex]

[tex]A+B+C=180\°[/tex]

substitute the values

[tex]A=45.5\°[/tex]

[tex]B=37\°[/tex]

[tex]45.5\°+37\°+C=180\°[/tex]

[tex]C=180\°-(45.5\°+37\°)=97.5\°[/tex]

step 3

Find the first length of side c

[tex]\frac{a}{sin(A)}=\frac{c}{Sin(C)}[/tex]

substitute the values

[tex]\frac{32}{sin(37\°)}=\frac{c}{Sin(97.5\°)}[/tex]

[tex]c=Sin(97.5\°)\frac{32}{sin(37\°)}=52.7\ units[/tex]

therefore

the measures for the first solution of the triangle are

[tex]A=45.5\°[/tex] , [tex]a=32\ units[/tex]

[tex]B=37\°[/tex] , [tex]b=27\ units[/tex]

[tex]C=97.5\°[/tex] , [tex]b=52.7\ units[/tex]

step 4    

Find the second measure of angle C with the second measure of angle A

Remember that the sum of the internal angles of a triangle must be equal to  [tex]180\°[/tex]

[tex]A+B+C=180\°[/tex]

substitute the values

[tex]A=134.5\°[/tex]

[tex]B=37\°[/tex]

[tex]134.5\°+37\°+C=180\°[/tex]

[tex]C=180\°-(134.5\°+37\°)=8.5\°[/tex]

step 5

Find the second length of side c

[tex]\frac{a}{sin(A)}=\frac{c}{Sin(C)}[/tex]

substitute the values

[tex]\frac{32}{sin(37\°)}=\frac{c}{Sin(8.5\°)}[/tex]

[tex]c=Sin(8.5\°)\frac{32}{sin(37\°)}=7.9\ units[/tex]

therefore

the measures for the second solution of the triangle are

[tex]A=45.5\°[/tex] , [tex]a=32\ units[/tex]

[tex]B=37\°[/tex] , [tex]b=27\ units[/tex]

[tex]C=8.5\°[/tex] , [tex]b=7.9\ units[/tex]

Answer:

The guy above is right, 2 solutions.

Step-by-step explanation:

In order to know how many solutions are possible in a triangle, we need to compare the b and height.

height in this question is:  sin B * a

sin 37 * 32 = 19.2

In this case, The length of the line b is longer than the height,

which can create 2 triangles.