Respuesta :

we have been asked to perform [tex] (6.496*10^{-6})\div (2.8*10^5) [/tex]

The given expression can be written as

[tex] \frac{(6.496*10^{-6})}{2.8*10^5} [/tex]

Now it can be re-written as below

[tex] =\frac {(6.496*10^{-6})}{2.8*10^5}=\frac{6.496}{2.8}*\frac{10^{-6}}{10^5}\\
\\
\text{Now using the exponent rule } \\
\\
\frac{a^m}{a^n}=a^{m-n}\\
\\
\text{we can re-write as below}\\
\\
\frac{6.496}{2.8}*\frac{10^{-6}}{10^5}= \frac{6.496}{2.8}*10^{-6-5}= \frac{6.496}{2.8}*10^{-11}\\
\\
\text{Now divide we get}\\
\\
=2.32*10^{-11} [/tex]