Respuesta :

Yes, the inverse of a symmetric matrix is also symmetric.

Take the symmetric matrix A, we have:

[tex]AA^{-1} = I[/tex]

and

[tex]I^{T} = I[/tex]

This gives:

[tex](AA^{-1})^{T} = AA^{-1}[/tex]

Using the properties:

[tex]AA^{-1} = A^{-1}A[/tex] and [tex](AA^{-1})^{T} = (A^{-1})^{T}A^{T}[/tex]

We get:

[tex](A^{-1})^{T}A^{T} = A^{-1}A[/tex]

Since [tex]A^{T} = A[/tex], we can perform the substitution to get:

[tex](A^{-1})^{T}A = A^{-1}A[/tex]

Multiplying by [tex]A^{-1} [/tex] on both sides:

[tex](A^{-1})^{T}AA^{-1} = A^{-1}AA^{-1}[/tex]

[tex](A^{-1})^{T}I = A^{-1}I[/tex]

[tex](A^{-1})^{T} = A^{-1}[/tex]

Proving that the inverse of a symmetric matrix is also symmetric.