Respuesta :
Let
point A----------------- > Bob
point B----------------- > lamppost that is to Bob left
point C----------------- > lamppost that is to Bob right
we know that
dAB=25 ft
dAC=30 ft
dBC=20 ft
see the attached figure
we use the law of cosines------------- > dBC²=dAB² +dAC² -2(dAB)(dAC)cos(alfa)
we have that
20²=25² +30² -2(25)(30)cos(alfa)-------- > cos (alfa)=(20²-(25² +30²))/(-2*25*30)
cos (alfa)=(400-(625 +900))/(-1500)= (400-(625 +900))/(-1500)=1125/1500=0.75
alfa=arccos (0.75)= 41.4096 -------- > 41 °-------- > ∡ BAC
the answer is 41 °

Angle = 41°
The information below forms a triangle. Therefore, lets represent the information with a diagram below.
From the diagram we are to find angle x. Therefore, using cosine rule we can find angle below
- 20² = 30² + 25² - 2 × 30 × 25 cos x
400 = 900 + 625 - 1500 cos x
400 - 1525 = -1500 cos x
-1125 = -1500 cos
cos x = -1125/-1500
x = cos⁻¹ 0.75
x = 41.409622109
x ≈ 41°
read more : https://brainly.com/question/13094186
