Respuesta :
rewriting x^4 as A^2 and x^2 and A.
A^2-52A+576=0
(A-36)(A-16)=0
A=36,16
since A is x^2,
x^2=36 and x^2=16
x=6 and -6 and x=4 and -4
A^2-52A+576=0
(A-36)(A-16)=0
A=36,16
since A is x^2,
x^2=36 and x^2=16
x=6 and -6 and x=4 and -4
ANSWER
The solutions are,
[tex]x = - 6 \: or \: x = 6 \: or \: x = - 4 \: or \: x = 4[/tex]
EXPLANATION
The given polynomial equation is,
[tex] {x}^{4} - 52 {x}^{2} + 576 = 0[/tex]
We can rewrite the equation to obtain,
[tex]( {x}^{2} )^{2} - 52 {x}^{2} + 576 = 0[/tex]
If we let
[tex]u = {x}^{2} [/tex]
Then our equation becomes,
[tex] {u}^{2} - 52u + 576 = 0[/tex]
This is a quadratic equation that can be solved by factoring.
We split the middle term to obtain,
[tex] {u}^{2} - 16u - 36u+ 576 = 0[/tex]
This factors to give us,
[tex]u(u - 16) - 36(u - 16) = 0[/tex]
[tex](u - 16)(u - 36) = 0[/tex]
[tex]u = 16 \: or \: u = 36[/tex]
This implies that,
[tex] {x}^{2} = 16 \:or \: {x}^{2} = 36[/tex]
[tex]x = \pm4 \: or \: x = \pm6[/tex]
There real solutions are,
[tex]x = - 6 \: or \: x = 6 \: or \: x = - 4 \: or \: x = 4[/tex]
The solutions are,
[tex]x = - 6 \: or \: x = 6 \: or \: x = - 4 \: or \: x = 4[/tex]
EXPLANATION
The given polynomial equation is,
[tex] {x}^{4} - 52 {x}^{2} + 576 = 0[/tex]
We can rewrite the equation to obtain,
[tex]( {x}^{2} )^{2} - 52 {x}^{2} + 576 = 0[/tex]
If we let
[tex]u = {x}^{2} [/tex]
Then our equation becomes,
[tex] {u}^{2} - 52u + 576 = 0[/tex]
This is a quadratic equation that can be solved by factoring.
We split the middle term to obtain,
[tex] {u}^{2} - 16u - 36u+ 576 = 0[/tex]
This factors to give us,
[tex]u(u - 16) - 36(u - 16) = 0[/tex]
[tex](u - 16)(u - 36) = 0[/tex]
[tex]u = 16 \: or \: u = 36[/tex]
This implies that,
[tex] {x}^{2} = 16 \:or \: {x}^{2} = 36[/tex]
[tex]x = \pm4 \: or \: x = \pm6[/tex]
There real solutions are,
[tex]x = - 6 \: or \: x = 6 \: or \: x = - 4 \: or \: x = 4[/tex]