Question 2(Multiple Choice Worth 2 points)
(10.06 MC)

Compare the functions shown below:

f(x) = 4 sin (2x − π) − 1

g(x)
x y
−1 6
0 1
1 −2
2 −3
3 −2
4 1
5 6

h(x) = (x − 2)2 + 4


Which function has the smallest minimum y-value?
f(x)
g(x)
h(x)
Both f(x) and g(x) have the same minimum y-value.

Respuesta :

Answer:

1. f(x)=4 sin (2 x-π)-1

 =4 sin [-(π-2 x)] -1

 = -4 sin 2 x -1

-1 ≤ sin 2 x ≤1

f(x) is minimum, when, sin 2 x=1

= -4 × 1 -1

= -5→Minimum value of f(x).

2. Minimum y value of g(x) by looking at the table is ,

g(x)=-3→Minimum

3. h(x)=(x-2)²+4

As, (x-2)², will yield always a positive value.

So, minimum of h(x), will be at , x=2

h(2)=(2-2)²+4=4→Minimum

Among the three function given, f(x) has minimum y -value,equal to -5.

Option A: f(x)

Answer:

A.) f(x)

Step-by-step explanation:

I took the test :)