Respuesta :

Answer:  The correct probability is (D) [tex]P(C/A)=\dfrac{13}{17}.[/tex]

Step-by-step explanation:  We are given to select the option that gives the correct probability statements using the Venn-diagram in the figure.

From the figure, we can see that there are three events, A, B and C.

And,

[tex]n(A)=1+6+7+3=17,\\\\n(B)=1+6+4+9=20,\\\\n(C)=6+4+6+7=23,\\\\n(A\cap B)=1+6=7,\\\\n(A\cap C)=6+7=13,\\\\n(B\cap C)=6+4=10,\\\\n(A\cap B\cap C)=6.[/tex]

By the law of SET THEORY, we have

[tex]n(A\cup B\cup C)=n(A)+n(B)+n(C)-n(A\cap B)-n(B\cap C)-n(A\cap C)+n(A\cap B\cap C)\\\\\Rightarrow n(A\cup B\cup C)=17+20+23-7-13-10+6\\\\\Rightarrow n(A\cup B\cup C)=36.[/tex]

So, the total number of elements in the sample space 'S' will be

n(S) = 36 + 8 = 44.

Therefore,

[tex]P(A/B)=\dfrac{P(A\cap B)}{P(B)}=\dfrac{\dfrac{n(A\cap B)}{n(S)}}{\dfrac{n(B)}{n(S)}}=\dfrac{7}{44}\times \dfrac{44}{20}=\dfrac{7}{20},\\\\\\\\P(B/A)=\dfrac{P(B\cap A)}{P(A)}=\dfrac{\dfrac{n(B\cap A)}{n(S)}}{\dfrac{n(A)}{n(S)}}=\dfrac{7}{44}\times \dfrac{44}{17}=\dfrac{7}{17},\\\\\\\\P(A/C)=\dfrac{P(A\cap C)}{P(C)}=\dfrac{\dfrac{n(A\cap C)}{n(S)}}{\dfrac{n(C)}{n(S)}}=\dfrac{13}{44}\times \dfrac{44}{23}=\dfrac{13}{23},\\\\\\\\P(C/A)=\dfrac{P(C\cap A)}{P(A)}=\dfrac{\dfrac{n(C\cap A)}{n(S)}}{\dfrac{n(A)}{n(S)}}=\dfrac{13}{44}\times \dfrac{44}{17}=\dfrac{13}{17}.[/tex]

Thus, the correct probability is [tex]P(C/A)=\dfrac{13}{17}.[/tex]

Option (D) is correct.

The probability P(A/B) is 7/20, the probability P(B/A) is 7/17, the probability P(A/C) is 13/23, and the probability is P(C|A) is 13/17 option fourth is correct.

What is the Venn diagram?

It is defined as the diagram that shows a logical relation between sets.

The Venn diagram consists of circles to show the logical relation.

For the value of probability P(A|B):

We know that:

[tex]\rm P(A/B)=\frac{P(A\cap B)}{P(B)} \Rightarrow \frac{\frac{n(A\cap B)}{n(T)} }{\frac{n(B)}{n(T)} }[/tex]

From the Venn diagram:

n(A∩B) = 7, n(B) = 20, n(T) = 44

P(A/B) = (7/44)×44/20)

P(A/B) = 7/20

For P(B|A):

[tex]\rm P(B/A)=\frac{P(B\cap A)}{P(A)} \Rightarrow \frac{\frac{n(B\cap A)}{n(T)} }{\frac{n(A)}{n(T)} }[/tex]

The values of n(B∩A) = 7, n(A) =17

P(B/A) = (7/44)×(44/17)

P(B/A) = 7/17

For P(A|C):

[tex]\rm P(A/C)=\frac{P(A\cap C)}{P(C)} \Rightarrow \frac{\frac{n(A\cap C)}{n(T)} }{\frac{n(C)}{n(T)} }[/tex]

The value of n(A∩C) = 13, n(C) = 23

P(A/C) = (13/44)×(44/23)

P(A/C) = 13/23

For P(C|A):

[tex]\rm P(C/A)=\frac{P(C\cap A)}{P(A)} \Rightarrow \frac{\frac{n(C\cap A)}{n(T)} }{\frac{n(A)}{n(T)} }[/tex]

The values of n(C∩A) = 13, n(A) = 17

P(C|A) = (13/44)×(44/17)

P(C|A) =13/17

Thus, the probability P(A/B) is 7/20, the probability P(B/A) is 7/17, the probability P(A/C) is 13/23, and the probability is P(C|A) is 13/17 option fourth is correct.

Learn more about the Venn diagram here:

brainly.com/question/1024798

#SPJ3