To solve the problem we must know about Trigonometric functions.
Trigonometric functions
[tex]\rm {Sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]\rm {Cos \theta=\dfrac{Base}{Hypotenuse}[/tex]
[tex]\rm {tan\theta=\dfrac{Perpendicular}{Base}[/tex]
where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
- The value of the ∠R is 28.0724°.
- The value of the ∠P is 61.9275°.
Given to us
- PR = 17 cm
- QR = 15 cm
- PQ = 8 cm
1. For ∠R
For ∠R, the opposite side will be PR, therefore, PR will be the Perpendicular,
Substituting the values in the formula of Sine,
[tex]\rm {Sin (\angle R)=\dfrac{PQ}{PR}\\\\
[/tex]
[tex]\rm {Sin (\angle R)=\dfrac{8}{17}\\
[/tex]
[tex]\rm {(\angle R)=Sin^{-1} \dfrac{8}{17}\\
[/tex]
[tex]\rm {(\angle R)=28.0724^o
[/tex]
Hence, the value of the ∠R is 28.0724°.
2. For ∠P
For ∠P, the opposite side will be QR, therefore, QR will be the Perpendicular,
Substituting the values in the formula of Sine,
[tex]\rm {Sin (\angle P)=\dfrac{QR}{PR}\\\\
[/tex]
[tex]\rm {Sin (\angle P)=\dfrac{15}{17}\\
[/tex]
[tex]\rm {(\angle P)=Sin^{-1} \dfrac{15}{17}\\
[/tex]
[tex]\rm {(\angle R)=61.9275^o
[/tex]
Hence, the value of the ∠P is 61.9275°.
Learn more about Sine function:
https://brainly.com/question/6826226