Respuesta :
3 pipes take 12 hours
⇒ In 1 hour, the 3 pipes can fill 1/12 of the pool
2 of the pipes take 18 hours
⇒ in 1 hour, the 2 pipes can fill 1/18 of the pool
In 1 hour, the third pipe alone can fill :
[tex]\dfrac{1}{12} - \dfrac{1}{18} = \dfrac{3}{36} - \dfrac{2}{36} = \dfrac{1}{36} \text { of the pool}[/tex]
Time needed :
[tex]1 \div \dfrac{1}{36} = 1 \times 36 = 36 \text { hours} [/tex]
----------------------------------------------------------------------------------------
Answer: It will take 36 hours for the third pipe to fill the pool.
----------------------------------------------------------------------------------------
⇒ In 1 hour, the 3 pipes can fill 1/12 of the pool
2 of the pipes take 18 hours
⇒ in 1 hour, the 2 pipes can fill 1/18 of the pool
In 1 hour, the third pipe alone can fill :
[tex]\dfrac{1}{12} - \dfrac{1}{18} = \dfrac{3}{36} - \dfrac{2}{36} = \dfrac{1}{36} \text { of the pool}[/tex]
Time needed :
[tex]1 \div \dfrac{1}{36} = 1 \times 36 = 36 \text { hours} [/tex]
----------------------------------------------------------------------------------------
Answer: It will take 36 hours for the third pipe to fill the pool.
----------------------------------------------------------------------------------------