Respuesta :

 The  simplest  formula  is   calculated  as  follows

find  the  moles of each   element  =  5  composition/molar  mass  of  element

C=  54.5 /  12 =  4.542  moles
H=  9.1/1=  9.1  moles
O =  36.4 /16=  2.275  moles

find  the  mole  ratio  by  diving  each  mole    with the  smallest  mole  (  2.275 mole)

C  =  4.542/  2.275 =  2
H=  9.1/  2.275= 4
O=  2.275/2.275= 1

the  simple  formula is therefore  =  C2H4O

Answer : The simplest formula of a compound is, [tex]C_2H_4O[/tex]

Solution :

If percentage are given then we are taking total mass is 100 grams.

So, the mass of each element is equal to the percentage given.

Mass of C = 54.5 g

Mass of H = 9.1 g

Mass of O = 36.4 g

Molar mass of C = 12 g/mole

Molar mass of H = 1 g/mole

Molar mass of O = 16 g/mole

Step 1 : convert given masses into moles.

Moles of C = [tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{54.5g}{12g/mole}=4.54moles[/tex]

Moles of H = [tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{9.1g}{1g/mole}=9.1moles[/tex]

Moles of O = [tex]\frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{36.4g}{16g/mole}=2.28moles[/tex]

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For C = [tex]\frac{4.54}{2.28}=1.99\approx 2[/tex]

For H = [tex]\frac{9.1}{2.28}=3.99\approx 4[/tex]

For O = [tex]\frac{2.28}{2.28}=1[/tex]

The ratio of C : H : O = 2 : 4 : 1

The mole ratio of the element is represented by subscripts in empirical formula.

The Empirical formula = [tex]C_2H_4O_1=C_2H_4O[/tex]

Therefore, the simplest formula of the compound is, [tex]C_2H_4O[/tex]