Respuesta :

we are given

[tex] 1-2sin^2(\frac{x}{2} ) [/tex]

we can use trigonometric identity

we know that

[tex] sin^2(\frac{x}{2} )+cos^2(\frac{x}{2} )=1 [/tex]

now, we can replace 1 as this

[tex] =sin^2(\frac{x}{2} )+cos^2(\frac{x}{2} )-2sin^2(\frac{x}{2} ) [/tex]

now, we can simplify it

and we get

[tex] =cos^2(\frac{x}{2} )-sin^2(\frac{x}{2} ) [/tex]

now, we can use half angle formula

[tex] cos(\theta)=cos^2(\frac{\theta}{2} )-sin^2(\frac{\theta}{2} ) [/tex]

so, we will get

[tex] cos^2(\frac{x}{2} )-sin^2(\frac{x}{2} )=cos(2*\frac{x}{2}) [/tex]

[tex] =cos(x) [/tex]

so,

[tex] 1-2sin^2(\frac{x}{2} )=cos(x) [/tex].............Answer