Respuesta :

ANSWER

The explicit formula is
[tex]a_n= \frac{3}{2} ({ \frac{1}{2} })^{n - 1} [/tex]


EXPLANATION

The given geometric sequence is
[tex] \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}, \frac{3}{32} [/tex]

The explicit formula is given by,

[tex]a_n = a_1 ({r})^{n - 1} [/tex]


where the first term is
[tex]a_1 = \frac{3}{2} [/tex]


and the common ratio is

[tex]r = \frac{a_2}{a_1} [/tex]

[tex]r = \frac{ \frac{3}{4} }{ \frac{3}{2} } [/tex]


This implies that,


[tex]r = \frac{3}{4} \times \frac{2}{3} [/tex]


[tex]r = \frac{1}{2} [/tex]


We now substitute all these values in to the formula to obtain,




[tex]a_n= \frac{3}{2} ({ \frac{1}{2} })^{n - 1} [/tex]