Answer:
The population in 2017 is 171 million
Step-by-step explanation:
Let's assume population starts from 1991
so,
initial population is 147 million
so, [tex]A=147[/tex]
we can use formula
[tex]P=Ae^{kt}[/tex]
we can plug A=147
[tex]P=147e^{kt}[/tex]
In 1998:
t=1998-1991=7
[tex]P=153[/tex]
now, we can plug these values into formula and find k
[tex]153=147e^{7k}[/tex]
Divide both sides by 147
[tex]\frac{147e^{7k}}{147}=\frac{153}{147}[/tex]
[tex]e^{7k}=\frac{51}{49}[/tex]
[tex]\ln \left(e^{7k}\right)=\ln \left(\frac{51}{49}\right)[/tex]
[tex]k=\frac{\ln \left(\frac{51}{49}\right)}{7}[/tex]
[tex]k=0.00572[/tex]
now, we can plug it back
and we get
[tex]P=147e^{0.00572t}[/tex]
In 2017:
t=2017-1991=26
we can plug it and find P
[tex]P=147e^{0.00572\times 26}[/tex]
[tex]P=170.57[/tex]
So,
The population in 2017 is 171 million