A countries population in 1991 was 147 million. In 1998 it was 153 million. Estimate the population in 2017 using the exponential growth formula round your answer to the nearest million. P=Ae^kt

Respuesta :

Answer:

The population in 2017  is 171 million

Step-by-step explanation:

Let's assume population starts from 1991

so,

initial population is 147 million

so, [tex]A=147[/tex]

we can use formula

[tex]P=Ae^{kt}[/tex]

we can plug A=147

[tex]P=147e^{kt}[/tex]

In 1998:

t=1998-1991=7

[tex]P=153[/tex]

now, we can plug these values into formula and find k

[tex]153=147e^{7k}[/tex]

Divide both sides by 147

[tex]\frac{147e^{7k}}{147}=\frac{153}{147}[/tex]

[tex]e^{7k}=\frac{51}{49}[/tex]

[tex]\ln \left(e^{7k}\right)=\ln \left(\frac{51}{49}\right)[/tex]

[tex]k=\frac{\ln \left(\frac{51}{49}\right)}{7}[/tex]

[tex]k=0.00572[/tex]

now, we can plug it back

and we get

[tex]P=147e^{0.00572t}[/tex]

In 2017:

t=2017-1991=26

we can plug it and find P

[tex]P=147e^{0.00572\times 26}[/tex]

[tex]P=170.57[/tex]

So,

The population in 2017  is 171 million