contestada

Determine sum of the first 16 terms (S16) for an arithmetic series given the first tem is 9 (a = 9) and
the common difference is 4 (d = 4).

Respuesta :

[tex]\boxed{Sum=624}[/tex]

Explanation:

The nth term of an arithmetic series ([tex]a_{n}[/tex]) and the sum of an arithmetic series (Sum), for n terms, can be found as:

[tex]a_{n}=a_{1}+d(n-1) \\ \\ Sum=\frac{n}{2}[2a_{1}+(n-1)d] \\ \\ \\ Where: \\ \\ a_{1}:First \ term \\ \\ d:Common \ difference \\ \\ n=Number \ of \ term[/tex]

So, in this exercise:

[tex]a_{1}=a=9 \\ \\ d=4 \\ \\ n=16 \\ \\ \\ Sum=\frac{16}{2}[2(9)+(16-1)4] \\ \\ Sum=8[18+(15)4]  \\ \\ Sum=8[18+60] \\ \\ Sum=8[78] \\ \\ \boxed{Sum=624}[/tex]

Learn more:

Missing numbers in triomino: https://brainly.com/question/10510270

#LearnWithBrainly