Respuesta :

Step-by-step explanation:

To prove:

[tex]\sin 3x=3\sin x\cos^2 x-\sin^3x[/tex]

Identities used:

[tex]\sin(A+B)=\sin A\cos B+\cos A\sin B[/tex]      ......(1)

[tex]\sin 2A=2\sin A\cos A[/tex]        ........(2)

[tex]\cos 2A=\cos^2A-\sin^2 A[/tex]     .......(3)

Taking the LHS:

[tex]\Rightarrow \sin 3x=\sin (x+2x)[/tex]

Using identity 1:

[tex]\Rightarrow \sin (x+2x)=\sin x\cos 2x+\cos x\sin 2x[/tex]

Using identities 2 and 3:

[tex]\Rightarrow \sin x(\cos ^2x-\sin^2 x)+\cos x(2\sin x\cos x)\\\\\Rightarrow \sin x\cos^2x-\sin^3x+2\sin x\cos^2x\\\\\Rightarrow 3\sin x\cos^2x-\sin^3x[/tex]

As, LHS = RHS

Hence proved