The surface area of sphere B is A square units. The surface area of sphere C is twice that of sphere B. The surface area of sphere D is nine times that of sphere B. Determine the radii of spheres C and D in terms of A.

Respuesta :

Answer:

[tex]r_c=\sqrt{\frac{A}{2\pi}} \ units[/tex]

[tex]r_d=\frac{3}{2}\sqrt{\frac{A}{\pi}} \ units[/tex]

Step-by-step explanation:

we have

The surface area of sphere B is A square units ---> [tex]S_B=A\ units^2[/tex]

The surface area of sphere C is twice that of sphere B __> [tex]S_C=2A\ units^2[/tex]

The surface area of sphere D is nine times that of sphere B

[tex]S_D=9A\ units^2[/tex]

Remember  that

The surface area of a sphere is equal to

[tex]S=4\pi r^{2}[/tex]

step 1

Find the radius of sphere C

[tex]S_C=2A\ units^2[/tex]

so

[tex]4\pi(r_c)^2=2A[/tex]

Solve for r_c

[tex]r_c=\sqrt{\frac{2A}{4\pi}} \ units[/tex]

Simplify

[tex]r_c=\sqrt{\frac{A}{2\pi}} \ units[/tex]

step 2

Find the radius of sphere D

[tex]S_D=9A\ units^2[/tex]

so

[tex]4\pi(r_d)^2=9A[/tex]

Solve for r_d

[tex]r_d=\sqrt{\frac{9A}{4\pi}} \ units[/tex]

simplify

[tex]r_d=\frac{3}{2}\sqrt{\frac{A}{\pi}} \ units[/tex]