Respuesta :
Answer:
a = 1.709g
Explanation:
Given the absence of external forces being applied in the space station, it is possibly to use the Principle of Angular Momentum Conservation, which states that:
[tex]I_{o} \cdot \omega_{o} = I_{f} \cdot \omega_{f}[/tex]
The required initial angular speed is obtained herein:
[tex]g= \omega_{o}^{2}\cdot R_{ss}[/tex]
[tex]\omega_{o}=\sqrt{\frac{g}{R_{ss}} }[/tex]
[tex]\omega_{o}= \sqrt{\frac{9.807\,\frac{m}{s^{2}} }{153\,m} }[/tex]
[tex]\omega_{o} \approx 0.253\,\frac{rad}{s}[/tex]
The initial moment of inertia is:
[tex]I_{o} =I_{ss}+n\cdot m_{person}\cdot R_{ss}^{2}[/tex]
[tex]I_{o} = 4.16\times 10^{8}\,kg\cdot m^{2}+(150)\cdot (65\,kg)\cdot (153\,m)^{2}[/tex]
[tex]I_{o} = 6.442\times 10^{8}\,kg\cdot m^{2}[/tex]
The final moment of inertia is:
[tex]I_{f} =I_{ss}+n\cdot m_{person}\cdot R_{ss}^{2}[/tex]
[tex]I_{f} = 4.16\times 10^{8}\,kg\cdot m^{2}+(50)\cdot (65\,kg)\cdot (153\,m)^{2}[/tex]
[tex]I_{f} = 4.921\times 10^{8}\,kg\cdot m^{2}[/tex]
Now, the final angular speed is obtained:
[tex]\omega_{f} = \frac{I_{o}}{I_{f}}\cdot \omega_{o}[/tex]
[tex]\omega_{f} = \frac{6.442\times 10^{8}\,{kg\cdot m^{2}}}{4.921\times 10^{8}\,kg\cdot m^{2}} \cdot (0.253\,\frac{rad}{s} )[/tex]
[tex]\omega_{f} = 0.331\,\frac{rad}{s^}[/tex]
The apparent acceleration is:
[tex]a_{f} = \omega_{f}^{2}\cdot R_{ss}[/tex]
[tex]a_{f} = (0.331\,\frac{rad}{s} )^{2}\cdot (153\,m)[/tex]
[tex]a_{f} = 16.763\,\frac{m}{s^{2}}[/tex]
This is approximately 1.709g.