Respuesta :

Given:

In ΔABC, the measure of ∠C=90°, the measure of ∠A=49°, and BC = 5.1 feet.

We need to determine the length of AB

Length of AB:

The image of the triangle ABC is attached below.

Using the figure, we shall determine the length of AB by the trigonometric ratio.

Thus, we have;

[tex]sin \ \theta=\frac{opp}{hyp}[/tex]

where [tex]\theta=49^{\circ}[/tex], [tex]opp=BC[/tex] and [tex]hyp=AB[/tex]

Thus, we have;

[tex]sin \ 49^{\circ}=\frac{BC}{AB}[/tex]

Substituting BC = 5.1, we get;

[tex]0.7547=\frac{5.1}{AB}[/tex]

Simplifying, we have;

[tex]AB=\frac{5.1}{0.7547}[/tex]

Dividing, we get;

[tex]AB=6.7577[/tex]

Rounding off to the nearest tenth, we get;

[tex]AB=7.8[/tex]

Thus, the length of AB is 7.8 feet.

Ver imagen vijayalalitha