Respuesta :
Answer:
Option (2).
Step-by-step explanation:
This question is incomplete; here is the complete question and find the figure attached.
In the diagram of a circle O, what is the measure of ∠ABC?
27°
54°
108°
120°
m(minor arc [tex]\widehat {AC}[/tex]) = 126°
m(major arc [tex]\widehat {AC}[/tex]) = 234°
By the intersecting tangents theorem,
If the two tangents of a circle intersect each other outside the circle, measure of angle formed between them is half the difference of the measures of the intercepted arcs.
m∠ABC = [tex]\frac{1}{2}[m(\text {major arc{AC})}-m(\text{minor arc} {AC})][/tex]
= [tex]\frac{1}{2}(234-126)[/tex]
= 54°
Therefore, Option (2) will be the answer.
