Answer:
[tex] E(X) =1 *\frac{1}{5} +2 *\frac{2}{5} +7*\frac{2}{5}= 3.8[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) = \sum_{i=1}^n X^2_i P(X_i)[/tex]
And replacing we got:
[tex] E(X^2) =1^2 *\frac{1}{5} +2^2 *\frac{2}{5} +7^2*\frac{2}{5}= 21.4[/tex]
The variance would be given by:
[tex] Var(X) =E(X^2) -[E(X)]^2 = 21.4 -[3.8]^2 = 6.96[/tex]
And the deviation would be:
[tex] Sd(X) =\sqrt{6.96}= 2.638[/tex]
Step-by-step explanation:
For this case we have the following distribution given:
X 1 2 7
P(X) 1/5 2/5 2/5
We need to begin finding the mean with this formula:
[tex] E(X) = \sum_{i=1}^n X_i P(X_i)[/tex]
And replacing we got:
[tex] E(X) =1 *\frac{1}{5} +2 *\frac{2}{5} +7*\frac{2}{5}= 3.8[/tex]
Now we can find the second moment with this formula:
[tex] E(X^2) = \sum_{i=1}^n X^2_i P(X_i)[/tex]
And replacing we got:
[tex] E(X^2) =1^2 *\frac{1}{5} +2^2 *\frac{2}{5} +7^2*\frac{2}{5}= 21.4[/tex]
The variance would be given by:
[tex] Var(X) =E(X^2) -[E(X)]^2 = 21.4 -[3.8]^2 = 6.96[/tex]
And the deviation would be:
[tex] Sd(X) =\sqrt{6.96}= 2.638[/tex]