Respuesta :

Answer:

[tex]\mathrm{Range\:of\:}x^2:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]

The graph is also attached below.

Step-by-step explanation:

Given the function

[tex]y=x^2[/tex]

  • We know that the range of a function is the set of values of the dependent variable for which a function is defined.

[tex]\mathrm{For\:a\:parabola}\:ax^2+bx+c\:\mathrm{with\:Vertex}\:\left(x_v,\:y_v\right)[/tex]

[tex]\mathrm{If}\:a<0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v[/tex]

[tex]\mathrm{If}\:a>0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v[/tex]

[tex]a=1,\:\mathrm{Vertex}\:\left(x_v,\:y_v\right)=\left(0,\:0\right)[/tex]

[tex]f\left(x\right)\ge \:0[/tex]

Thus,

[tex]\mathrm{Range\:of\:}x^2:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]

The graph is also attached below.

Ver imagen absor201