contestada

The acceleration of a motorcycle is given by ax(t)=At-Bt2,A=1.5m/s2,B=0.120m/s2,the motorcycle at rest at t=0 a)Find its position and velocity as function of time b)What maximum velocity it attains

Respuesta :

Answer:

(a)

[tex]v(t) = \frac{At^2}{2} -\frac{Bt^3}{3}[/tex] --- velocity

[tex]x(t) = \frac{At^3}{6} -\frac{Bt^4}{12} + x(0)[/tex] --- position

(b) The maximum velocity is: 39.0625m/s

Explanation:

Given

[tex]a_x(t) =At -Bt^2[/tex]

[tex]A = 1.5m/s^3[/tex]

[tex]B = 0.120m/s^4[/tex]

Solving (a): The position and velocity as a function

To calculate the change in velocity, we integrate the given acceleration

i.e.

[tex]\int\limits^{v(t)}_{v(0)} {dv} = \int\limits^t_0 {a(t)} \, dt[/tex]

Integrate

[tex]v|\limits^{v(t)}_{v(0)} = \int\limits^t_0 {a(t)} \, dt[/tex]

Substitute v(t) and v(0) for v

[tex]v(t) - v(0) = \int\limits^t_0 {a(t)} \, dt[/tex]

[tex]v(0) = 0[/tex] ---- The initial velocity.

So, we have:

[tex]v(t) - 0 = \int\limits^t_0 {a(t)} \, dt[/tex]

[tex]v(t) = \int\limits^t_0 {a(t)} \, dt[/tex]

Substitute: [tex]a_x(t) =At -Bt^2[/tex]

[tex]v(t) = \int\limits^t_0 {[At -Bt^2]} \, dt[/tex]

Integrate

[tex]v(t) = {\frac{At^2}{2} -\frac{Bt^3}{3}}|\limits^t_0[/tex]

Substitute 0 and t for t

[tex]v(t) = [\frac{At^2}{2} -\frac{Bt^3}{3}] - [\frac{A*0^2}{2} -\frac{B*0^3}{3}][/tex]

[tex]v(t) = [\frac{At^2}{2} -\frac{Bt^3}{3}] - 0[/tex]

[tex]v(t) = \frac{At^2}{2} -\frac{Bt^3}{3}[/tex]

To calculate the change in position, we integrate the calculated velocity

i.e.

[tex]\int\limits^{x(t)}_{x(0)} {dx} = \int\limits^t_0 {v(t)} \, dt[/tex]

Integrate

[tex]x(t)|\limits^{x(t)}_{x(0)} = \int\limits^t_0 {v(t)} \, dt[/tex]

Substitute x(t) and x(0) for x(t)

[tex]x(t) - x(0) = \int\limits^t_0 {v(t)} \, dt[/tex]

Substitute: [tex]v(t) = \frac{At^2}{2} -\frac{Bt^3}{3}[/tex]

[tex]x(t) - x(0) = \int\limits^t_0 {\frac{At^2}{2} -\frac{Bt^3}{3}} \, dt[/tex]

Integrate

[tex]x(t) - x(0) = \frac{At^3}{6} -\frac{Bt^4}{12}}|\limits^t_0[/tex]

Substitute t and 0 for t

[tex]x(t) - x(0) = [\frac{At^3}{6} -\frac{Bt^4}{12}] - [\frac{A*0^3}{6} -\frac{B*0^4}{12}][/tex]

[tex]x(t) - x(0) = [\frac{At^3}{6} -\frac{Bt^4}{12}] - [0][/tex]

[tex]x(t) - x(0) = \frac{At^3}{6} -\frac{Bt^4}{12}[/tex]

Make x(t) the subject

[tex]x(t) = \frac{At^3}{6} -\frac{Bt^4}{12} + x(0)[/tex]

Where x(0) represents the initial position

Solving (b): The maximum velocity

First, we calculate the time at which it attains the maximum height

Set acceleration to 0

[tex]a_x(t) =At -Bt^2[/tex]

[tex]At - Bt^2 = 0[/tex]

Factorize

[tex]t(A - Bt) = 0[/tex]

Split

[tex]t = 0\ or\ A - Bt = 0[/tex]

t can't be 0.

So, we have:

[tex]A - Bt = 0[/tex]

Solve for t

[tex]-Bt = -A[/tex]

[tex]t = \frac{-A}{-B}[/tex]

[tex]t = \frac{A}{B}[/tex]

Substitute: [tex]A = 1.5m/s^3[/tex] and [tex]B = 0.120m/s^4[/tex]

[tex]t = \frac{1.5m/s^3}{0.120m/s^4}[/tex]

[tex]t = \frac{1.5}{0.120}s[/tex]

[tex]t = 12.5s[/tex]

Substitute [tex]t = 12.5s[/tex] in v(t) to get the maximum velocity

[tex]v(t) = \frac{At^2}{2} -\frac{Bt^3}{3}[/tex]

[tex]v(t) = \frac{A*12.5^2}{2} -\frac{B*12.5^3}{3}[/tex]

[tex]v(t) = \frac{156.25A}{2} -\frac{1953.125B}{3}[/tex]

Substitute: [tex]A = 1.5m/s^3[/tex] and [tex]B = 0.120m/s^4[/tex]

[tex]vmax = (156.25*1.5)/2 -(1953.125*0.120)/3[/tex]

[tex]v_{max} = 117.1875 - 78.125[/tex]

[tex]v_{max} = 39.0625[/tex]