The correct answer to this question is d.) integral from 1 to 2 of (2/(x+1))
To solve this:
Since Δx = 1/n.
lim (n→∞) Δx [1/(1+Δx) + 1/(1+2Δx)+ ... + 1/(1+nΔx)]
= lim (n→∞) Σ(k = 1 to n) [1/(1 + kΔx)] Δx.
x <---> a + kΔx
a = 0, then b = 1, so that Δx = (b - a)/n = 1/n
Since (1 + kΔx) combination, a = 1 so that b = 2.
Then, f(1 + kΔx) <-----> f(x) ==> f(x) = 1/x.
This sum represents the integral
∫(x = 1 to 2) (1/x) dx, so the correct answer is d.) integral from 1 to 2 of (2/(x+1))
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.