Answer:
[tex]x=2\\x=-\frac{1}{2}[/tex]
Step-by-step explanation:
1) Move terms to the left side.
[tex]3x=2x^{2} -2\\3x-(2x^{2}-2)=0[/tex]
2) Distribute.
[tex]3x-(2x^{2} -2)=0\\3x-2x^{2} +2=0[/tex]
3) Rearrange terms.
[tex]3x-2x^{2} +2=0\\-2x^{2} +3x+2=0[/tex]
4) Common factor.
[tex]-2x^{2} +3x+2=0\\-(2x^{2} -3x-2)=0[/tex]
5) Divide both sides of the equation by the same term.
[tex]-(2x^{2} -3x-2)=0\\2x^{2} -3x-2=0[/tex]
6) Use the quadratic formula.
[tex]x=\frac{-b+\sqrt{b^{2}-4ac } }{2a}[/tex]
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
[tex]2x^{2} -3x-2=0\\a=2\\b=-3\\c=-2[/tex]
[tex]x=\frac{-(-3)+\sqrt{(-3)^{2} -4*2(-2)} }{2*2}[/tex]
7) Simplify.
Evaluate the exponent
[tex]x=\frac{3+\sqrt{(-3)^{2}-4*2(-2) } }{2*2}[/tex]
[tex]x=\frac{3+\sqrt{9-4*2(-2)} }{2*2}[/tex]
Multiply the numbers
[tex]x=\frac{3+\sqrt{9-4*2(-2)} }{2*2}[/tex]
[tex]x=\frac{3+\sqrt{9+16} }{2*2}[/tex]
Add the numbers
[tex]x=\frac{3+\sqrt{9+16} }{2*2}[/tex]
[tex]x=\frac{3+\sqrt{25} }{2*2}[/tex]
Evaluate the square root
[tex]x=\frac{3+\sqrt{25} }{2*2} \\x=\frac{3+5}{2*2}[/tex]
Multiply the numbers
[tex]x=\frac{3+5}{2*2}[/tex]
[tex]x=\frac{3+5}{4}[/tex]
8) Seperate the equations.
To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.
[tex]x=\frac{3+5}{4}[/tex]
[tex]x=\frac{3-5}{4}[/tex]
9) Solve.
Rearrange and isolate the variable to find each solution.
[tex]x=2\\x=-\frac{1}{2}[/tex]