Answer:
H (13, -16)
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}[/tex]
Given:
Substitute the given endpoint G and midpoint M into the midpoint formula:
[tex]\implies M=\left(\dfrac{x_H+x_G}{2},\dfrac{y_H+y_G}{2}\right)[/tex]
[tex]\implies (3, 4)=\left(\dfrac{x_H-7}{2},\dfrac{y_H+24}{2}\right)[/tex]
x-value of endpoint H:
[tex]\implies 3=\dfrac{x_H-7}{2}[/tex]
[tex]\implies 6=x_H-7[/tex]
[tex]\implies x_H=13[/tex]
y-value of endpoint H:
[tex]\implies 4=\dfrac{y_H+24}{2}[/tex]
[tex]\implies8=y_H+24[/tex]
[tex]\implies y_H=-16[/tex]
Therefore, the coordinates of endpoint H are: