Respuesta :

So let's use some equations to represent the data [let R= cost of ring & B= cost of bracelet]

R= B + $ 36 .... (1)

B= [tex] \frac{4}{7} [/tex] × R ... (2)

By using simultaneous equations to solve for B and R.
Substitute eq. (1) into eq. (2)

      B =  [tex] \frac{4}{7} [/tex] × (B + $36)

      B = [tex] \frac{4}{7} [/tex]B + [tex] \frac{144}{7} [/tex]

     [tex]( \frac{7}{7} - \frac{4}{7} ) B = \frac{144}{7} [/tex]

     [tex] \frac{3}{7} B = \frac{144}{7} [/tex]

⇒  B = $48

By substituting value of B into ea (1)

If R = B + $36
   
   R = ($48) + $36
     
      = $84

∴   the total of the two items = R + B
                                             = $84 + $48
                                             = $132