So let's use some equations to represent the data [let R= cost of ring & B= cost of bracelet]
R= B + $ 36 .... (1)
B= [tex] \frac{4}{7} [/tex] × R ... (2)
By using simultaneous equations to solve for B and R.
Substitute eq. (1) into eq. (2)
B = [tex] \frac{4}{7} [/tex] × (B + $36)
B = [tex] \frac{4}{7} [/tex]B + [tex] \frac{144}{7} [/tex]
[tex]( \frac{7}{7} - \frac{4}{7} ) B = \frac{144}{7} [/tex]
[tex] \frac{3}{7} B = \frac{144}{7} [/tex]
⇒ B = $48
By substituting value of B into ea (1)
If R = B + $36
R = ($48) + $36
= $84
∴ the total of the two items = R + B
= $84 + $48
= $132