What is the simplified form of 15 x to the fifth power over 24 y to the eighth power divided by 4 x squared over 8 y to the fourth power?

Respuesta :

15x^5            4x^2
---------    /      -------
24 y^8            8 y^4

invert the second fraction:-

15x^5          8y^4
-------    *     ------
24y^8          4 x^2


=   5 x^3 
    --------
    4 y^4
    

Answer:

Simplified form: [tex]\Rightarrow \dfrac{5x^{3}}{4y^{4}}[/tex]

Step-by-step explanation:

Given: Phrase " 15 x to the fifth power over 24 y to the eighth power divided by 4 x squared over 8 y to the fourth power"

Numerator: "15 x to the fifth power over 24 y to the eighth power"

[tex]\Rightarrow \dfrac{15x^5}{24y^8}[/tex]

Denominator: "4 x squared over 8 y to the fourth power"

[tex]\Rightarrow \dfrac{4x^2}{8y^4}[/tex]

Now we simplify numerator and denominator using exponent law.

Exponent Law:

[tex]a^m\cdot a^n=a^{m+n}[/tex]

[tex]a^m\div a^n=a^{m-n}[/tex]

[tex]\Rightarrow \dfrac{15x^5}{24y^8}\div \dfrac{4x^2}{8y^4}[/tex]

[tex]\Rightarrow \dfrac{15x^5}{24y^8}\times \dfrac{8y^4}{4x^2}[/tex]

[tex]\Rightarrow \dfrac{15x^5\cdot 8y^4}{24y^8\cdot 4x^2}[/tex]

[tex]\Rightarrow \dfrac{120x^5y^4}{96x^2y^8}[/tex]

[tex]\Rightarrow \dfrac{5x^{5-2}}{4y^{8-4}}[/tex]

[tex]\Rightarrow \dfrac{5x^{3}}{4y^{4}}[/tex]