Respuesta :

The first one is the answer :)

Answer:

Option 1 - [tex]\log_a (3c-d)=2b+1[/tex]

Step-by-step explanation:

Given : Equation [tex]a^{2b+1}=3c-d[/tex]

To find : Which of the following is the equation ?

Solution :

Equation [tex]a^{2b+1}=3c-d[/tex]

Taking log both side,

[tex]\log (a^{2b+1})=\log (3c-d)[/tex]

Apply logarithmic property, [tex]\log a^x=x\log a[/tex]

[tex](2b+1)\log (a)=\log (3c-d)[/tex]

[tex](2b+1)=\frac{\log (3c-d)}{\log a}[/tex]

Apply change the base rule, [tex]\frac{\log _a x}{\log _a y}=\log_y x[/tex]

[tex](2b+1)=\log_a (3c-d)[/tex]

So, the required equation is [tex]\log_a (3c-d)=2b+1[/tex]

Therefore, option 1 is correct.