Respuesta :
[tex]\bf \textit{arc's legnth}\\\\
s=r\theta \quad
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad radians\\
------\\
s=16\\
r=13
\end{cases}\implies 16=13\theta \implies \cfrac{16}{13}=\theta[/tex]
The radian measure of the central angle θ is 1.2 radian.
What is radian?
A unit of plane angular measurement that is equal to the angle at the center of a circle subtended by an arc whose length equals the radius or approximately 57.3 degrees.
using the formula,
s= r[tex]\theta[/tex]
We have,
radius = 13cm
and, length of arc=16 cm
So, s=16 and r= 13 cm
Thus,
16=13[tex]\theta[/tex]
[tex]\theta[/tex]= 16/13
[tex]\theta[/tex]= 16/13
[tex]\theta[/tex]= 1.23
[tex]\theta[/tex]= 1.2 radian.
Hence, the radian measure of the central angle θ is 1.2 radian.
Learn more about radian here:
https://brainly.com/question/7721249
#SPJ2