Respuesta :
Let t be the time passed in years and y be the value of baseball card.
You know that
- when x=0, then y=2;
- when x=5, then y=25;
- when x=10, y=8.
The equation in standard form is [tex]y=ax^2+bx+c.[/tex] Substitute given data into the equation:
[tex]a\cdot 0^2+b\cdot 0+c=2,\\\\a\cdot 5^2+b\cdot 5+c=25,\\\\a\cdot 10^2+b\cdot 10+c=8.[/tex]
Solve the system of equations:
[tex]\left\{\begin{array}{l}c=2\\25a+5b+c=25\\100a+10b+c=8\end{array}\right.\Rightarrow \left\{\begin{array}{l}c=2\\25a+5b=23\\100a+10b=6\end{array}\right.\Rightarrow[/tex]
[tex]\left\{\begin{array}{l}c=2\\a=-0.76\approx -0.8\\b=8.4\end{array}\right.[/tex]
Then the parabola equation is
[tex]y=-0.8x^2+8.4x+2.[/tex]