Respuesta :

Given that x² = y + z, y² = z + x, and z² = x + y, we can rewrite the equations as:

x² - y - z = 0

y² - z - x = 0

z² - x - y = 0

We can rearrange the equations to get:

x² - y - z = 0

y² - z - x = 0

z² - x - y = 0

Adding all three equations together, we get:

x² + y² + z² - 2(x + y + z) = 0

This can be further simplified as:

(x + y + z)² - 3(x + y + z) = 0

Therefore, (x + y + z)(x + y + z - 3) = 0

This implies that either x + y + z = 0 or x + y + z = 3

If x + y + z = 0, then 1/x + 1/y + 1/z = 0

If x + y + z = 3, then

1/x + 1/y + 1/z = x + y + z / xyz

                = 3 / xyz

                = 1

Therefore, 1/x + 1/y + 1/z = 1